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A SELF-SIMILAR SOLUTION FOR FAN JETS WITH AN ARBITRARY DEGREE OF SWIRLING 

E. M. Smirnov UDC 532.526 

Solutions are known [1-4] to the problem of the propagation of swirled fan (radial) jets 
into a submerged space. Functions which are valid at a distance considerably exceeding the 
radius of the round slit, where the jet is always weakly swirled, are obtained in [i, 2]. In 
the search for a solution for a jet discharging from an infinitely narrow slit of finite 
radius the assumption of weak swirling of the jet was introduced in [3] as an auxiliary as- 
sumption. In [4], where several terms of an asymptotic expansion by inverse powers of the dis- 
tance from the nozzle were found for a laminar jet with a considerable swirling, the question 
of the determination of the integration constants remains open. 

In the present paper it is shown that the problem of the propagation of a fan jet dis- 
charging from an infinitely narrow slit of finite radius has a self-similar solution for any 
degree of swirling of the jet. 

w In the approximation of boundary-layer theory the equations describing the flow in 
swirled laminar or turbulent fan jets of incompressible liquid have the following form in the 
cylindrical coordinate system x, y, (p (the x axis is directed perpendicular to the axis of 
symmetry and ~ is the polar angle) 

3u , 3u ~r "~- I c) ,r . . .  

u-aTe.. -~- ~ ' - a 7 -  7 = g 0,--7.' ' (i.i) 

aw d- au, ,,u. 1 o ~ , .  
u-a-- d v a y  ' . = p a g  ' (1.2) 

a (.r,,) a (.n,) _ O, ( 1 . 3 )  
dx ' 8y 

w h e r e  u ,  v ,  and  w a r e  t h e  c o m p o n e n t s  o f  t h e  v e l o c i t y  v e c t o r  i n  t h e  d i r e c t i o n s  o f  t h e  x ,  y ,  
and  ~ a x e s ;  T x a n d  ~ a r e  t h e  c o m p o n e n t s  o f  t h e  s h e a r  s t r e s s  o f  f r i c t i o n  i n  t h e  d i r e c t i o n s  
o f  t he  x a n d  q a x e s ;  p i s  t h e  d e n s i t y  o f  t h e  l i q u i d .  

F i r s t  l e t  us  c o n s i d e r  a f r e e  s u b m e r g e d  j e t .  Then  t h e  s y s t e m  ( 1 . 1 ) - ( 1 . 3 )  mus t  be  i n t e -  
g r a t e d  w i t h  t h e  f o l l o w i n g  b o u n d a r y  c o n d i t i o n s :  

l u = O ,  w-~O at y = _ _  c~; 

(-~-,j = 0 at y = O .  (1.4) 

The goal of the present report is to find a self-similar solution, and therefore the 
initial condition loses its importance. The two integral conditions of conservation needed 
for complete determinacy of the problem will be obtained in the course of the solution. 

We will adopt the widely prevalent hypothesis that the following relationship is valid 
not only for laminar flows but also for turbulent flows of the boundary-layer type: 

Leningrad. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnieheskoi Fiziki, No. 5, 
pp. 71-75, September-October, 1977. Original article submitted October 6, 1976. 

0021-8944/77/1805-0647507.50 �9 1978 Plenum Publishing Corporation 647 



% % (1.5) 
8u/by :--- -#u/~y" 

w Equations (1.1)-(1.3) and the boundary conditions (1.4) do not impose restrictions 
on the assumption of similarity of the profiles of the longitudinal velocity components in 
each cross section. Thus, we set 

, , i x ,  y) - - }~(x )u(x ;  g). ( 2 . 1 )  

S u b s t i t u t i n g  ( 1 . 5 )  and ( 2 . 1 )  i n t o  ( 1 . t )  and ( 1 . 2 ) ,  we a s c e r t a i n  t h a t  w i t h  

~ =: ( D x  ~" - -  i) -1''2, ( 2 . 2 )  

where D is a constant, Eqs. (I.I) and (1.2) are reduced to the same form 

~u 0u ~,cu~ I ~T x 
" , f~§  x = ~  0u " ( 2 . 3 )  

C o n s e q u e n t l y ,  t he  s e c o n d  o f  t h e s e  e q u a t i o n s  can be o m i t t e d  from f u r t h e r  c o n s i d e r a t i o n .  

We p e r f o r m  the  f o l l o w i n g  t r a n s f o r m a t i o n  o f  v a r i a b l e s  o f  t he  s y s t e m  o f  e q u a t i o n s  ( 2 . 3 )  
and (I. 3) : 

l "" 
x l  -- ~ / (x /x , , )  dx ,  Yl  -- yo~x/x~, 

;.o ( 2 . 4 )  

l ~: [ +Y"a(~'~ t ~l 1 ~ l i  o), {:1 = wo / Cx xo ) g xO) dx ' 

where m = ~(x)  = (1 + ~2 ) -1 /~  f ( x / x o )  i s  some f u n c t i o n  d e f i n e d  be low;  x = xa c o r r e s p o n d s  t o  
the  i n i t i a l  c r o s s  s e c t i o n ,  t o  t h e  r a d i u s  o f  t h e  round s l i t  f rom which  t he  j e t  e s c a p e s ,  in  
p a r t i c u l a r .  As a r e s u l t  o f  the  a p p l i c a t i o n  o f  t he  t r a n s f o r m a t i o n  ( 2 . 4 )  to  Eqs.  ( 2 .3 )  and 
(1 .3 )  we o b t a i n  t he  s y s t e m  

' ;<t' I e)u t _ _  x OT x 
Ul U,"---~ -~- L'I ~11 ~J(,}X d (X,/XO) 0 ~ '  1 '~ 

0u~ 0~'i = 0, (2.5) 

which e x a c t l y  c o i n c i d e s  w i t h  t he  s y s t e m  o f  e q u a t i o n s  d e s c r i b i n g  t h e  f low i n  p l a n e  j e t s  i f  

x~.~ (2;6) 
"~1 ~OXo/ ( x.' xo) " 

The boundary conditions (1.4) are transformed into the boundary conditions for a plane 
submerged jet. 

Suppose that one is able to choose a function f(x/xo) such that (2.6) is satisfied. Then 
the problem of the propagation of a free swirled fan jet discharging from an infinitely nar- 
row slit into a submerged space, the transformation (2.4) together with (1.5) and (2.1), is 
reduced to the problem of a plane free jet source. The latter is self-similar for both lami- 
nar [5] and turbulent [6] forms of motion. Consequently, the original problem also has a 
self-similar solution. 

Without writing out the well-known [5, 6] solutions for plane jet sources, we only re- 
call that these solutions are determined by a single quantity, apart from the physical char- 
acteristics of the liquid: the impulse of the jet. Let us express this quantity through the 
integral characteristics of a swirled fan jet. 

The integral condition of conservation which is valid for a plane submerged jet is 

P .i" u~dgl  == K = const, 

which  i n  the  v a r i a b l e s  d e s c r i b i n g  the  p r o p a g a t i o n  o f  a fan  j e t ,  i n  a c c o r d a n c e  w i t h  ( 2 . 4 ) ,  has  
the form 

- -~oo 

2 ~ 9 x  / i - - ) 2  ( u ~  (2 .7 )  
/ t =- t.~ , 

- - o o  

where 
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J = 2 ~ p x  o i " u"(x o,y) dy; 

= Xo at x = xo while the quantities J and K are related by the equation 

K 2ax0 

From the  i n t e g r a t i o n  o f  ( 1 . 2 )  a c r o s s  t h e  j e t  we i m m e d i a t e l y  g e t  

( 2 . 8 )  

or, using (2.1) and (2.7), 

2npx ~ ( u w d y  = L = c o n s t  

/ I~,5 ----L. (2.9) ~.xJ 
] I / 1 ~ ~:'- 

T a k i n g  X = Xo a t  x = xo in  ( 2 . 9 )  and ( 2 . 2 ) ,  we o b t a i n  

%'o - ' ~  L D = t § (.rxo/LF" 

Thus ,  tl~e q u a l t i t y  K, which  e n t e r s  i n t o  t h e  s o l u t i o n  f o r  a p l a n e  j e t ,  i s  f u l l y  d e t e r m i n e d  
t h r o u g h  t h e  : i n t e g r a l  c h a r a c t e r i s t i c s  o f  a f an  j e t .  

L e t  us f i n d  t h e  fo rm o f  t h e  f u n c t i o n  f ( x / x o )  which  i s  n e e d e d  l a t e r .  In  t h e  c a s e  o f  l a m i -  
n a r  j e t s  (p :is t he  c o e f f i c i e n t  o f  dynamic  v i s c o s i t y )  

a u  1 _ _  , a x  0 ~ u  XoT x 

TI -~ ~ 8y 1 oY'-x 8x (o2x ' 

which  i n  c o n j u n c t i o n  w i t h  ( 2 . 6 )  d e t e r m i n e s  f ( x / x o )  = a ( x / x o )  2. 

I n  a d i s c u s s i o n  o f  f r e e  t u r b u l e n t  f l o w s  one  can n e g l e c t  m o l e c u l a r  t r a n s f e r  in  compar i son  
w i t h  t u r b u l e n t  t r a n s f e r .  Using  t he  g e n e r a l i z e d  m i x i n g - l e n g t h  h y p o t h e s i s  o f  [ 7 ] ,  f o r  example ,  
we w r i t e  

/(Ozt)2 (~w)2 6z~ .2[0u, ' , ,2  

We assume that the mixing lengths Z and Z1 are proportional to the corresponding char- 
acteristic transverse sizes ~ and ~,; i.e., Z = cod and Z, = c,6,, where co and c, are empiri- 
cal constants. Comparing (2.6) and (2.11) and allowing for (2.1) and (2.4), for the turbu- 
lent form of motion we will have 

f (x 'xo)  = n :x '  x o. ( 2 . 12 )  

Here the factor n 2 = (co/c,) 2 allows for the possibility that the constants of propor- 
tionality between the mixing length and the characteristic transverse size for fan and plane 
jets may not coincide. The form (2.12) of the function f(x/xe) is retained when the most 
simple hypotheses of turbulence are used. 

It also turns but to be possible to obtain a self-similar solution for laminar semibounded 
fan jets discharging from infinitely narrow slits of finite radius and having an arbitrary de- 
gree of swir:ling. In the statement of the problem for a semibounded jet, in comparison with 
that for a free jet, only the boundary condi=ions are changed, and they now take the form 

: = w = v = O  at y = O ,  

- + w = O  at y = o o .  

One can ascertain that the transformation (2.4) together with (2.1) and (2.2) reduces this 
problem to the plane problem of a semibounded jet discharging from an infinitely narrow slit. 
The latter has a self-similar solution, obtained in [8]. In this case =he integral quantity 

N = p .f" u~ u~dy~ dy~ = const 
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entering into the solution for the plane jet is expressed through the integral characteris- 
tics of the swirled fan jet in a way analogous to (2.8) and (2.10): 

where (see [2]) 

E .~ 31 
N = ~ l / l + .~,  zo = E~o, 

E - - 2 . ~ p X o , .  u (Xo, Y) U (xo, Y) dy dy; 
0 

oo I" 

,b 

In conclusion, we note that all the solutions found earlier for free swirled fan jets are 
obtained as particular cases from the results of the present work. 
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STABILITY OF POISEUILLE FLOW IN AN ELASTIC CHANNEL 

O. Yu. Tsvelodub UDC 532.5 

The stability of a laminar boundary layer at a surface of the membrane type has been 
analyzed in [I, 2], while the stability of Poiseuille flow between membranes are analyzed in 
[3, 4]. Walls with a linear relationship between the perturbation of the pressure and the 
normal deformation of the surface were taken as the channel boundaries in [5]. The stability 
of the profile V = sin y (0 ~ y ~ ) was analyzed numerically in [6]. The stability of Poi- 
seuille flow in a channel whose walls are elastic plates is studied in the present report. In 
contrast to [3, 5, 6], pulsations of the friction at the channel walls are taken into account 
along with pressure pulsations, just as in [4]. It is shown that a significant reorganization 
of the regions of instability occurs when they are allowed for. A region of instability is 
found which exists for any finite Reynolds number. 

A stream whose velocity profile is V ~ V x = 1 -- y2 in a channel with walls y = • is 
analyzed (Fig. i). For the normal and tangential displacements of the upper plate we have 
[7] 

y=~ ~ ~ ~  

GO -- 

Fig. I 
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